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Abstract

We investigate the partial differential equation system which describes the double-diffusion
convection phenomena with the reduction formalism. Double-diffusion refers to when two
scalar quantities with different diffusivity, such as heat and solute concentration, contribute
to density gradients within a fluid under the influence of gravity. The time-dependent
self-similar trial function is applied and analytic results are presented for the dynamical
variables and analyzed in detail. Additionally, the entropy production was derived as well.
In the second part of the study we investigate the role of an additional heat source.

Keywords: self-similar method; double-diffusion; salty fingers; fluid flow; heat conduction
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1. Introduction

There is no question that transport processes have extreme importance both for scien-
tific and engineering applications. The simplest ones are heat conduction in solids and the
regular diffusion of particles. The existing literature of diffusion (or of heat conduction)
is immense; therefore, we mention some recent basic monographs [1-4] and additionally
some non-conventional ones [5,6] as well. The development in numerical analysis of diffu-
sion equations made remarkable steps in recent years as well [7,8]. On the other side, the
mathematical generalization of the diffusion equation including the p-Laplacian was also
investigated [9,10].

Coupling additional transport mechanisms (like fluid flow) to regular diffusion or heat
conduction drastically opens the horizon of interesting phenomena and non-linear effects. Good
examples are simplified heated flow systems like heated boundary layers [11] or the Rayleigh-
Benard convection [12]. These are diffusive convection systems where heat is transported
together with particle flow, which is convection instead of conduction. Such processes are
extremely important in the science of meteorology [13], oceanography [14] or in climate change
studies [15].

More than half a century ago, E.N. Lorenz investigated the Rayleigh-Bénard convection [16]
with a truncated Fourier series as a trial function and he pioneered the way to a new
discipline called chaos theory. On the other hand, if we investigate such diffusive convection
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systems with the self-similar Ansatz, we can relatively easily derive analytic solutions which
can predict the asymptotic temporal or spatial behavior of such physical phenomena. The
self-similar Ansatz is the natural trial function of the regular diffusion equation [17] because
the fundamental or Gaussian solution can be derived in a few lines and astonishingly new
kind of solutions can be easily obtained as well. This strong performance of this function
gives us a strong hint that additional disperse dynamical systems can be successfully
analyzed, giving insight into the global properties of their solutions. In recent years we
successfully investigated such systems like the Rayleigh-Bénard convection [18] or heated
boundary layers [19] presenting physically relevant analytic solutions in connection to
different special functions like the Kummer’s M and Kummer’s U functions.

We can continue on this path defining more complex (or rather more compound)
systems and investigate how they behave. First we analyzed systems where some diffusion
equations were coupled in various ways [20].

In the next study we consider the double-diffusive convection which is a fundamental
fluid dynamics phenomenon that arises when two scalar quantities with different dif-
fusivity, such as heat and solute concentration, contribute to density gradients within a
fluid under the influence of gravity. The interplay between thermal and compositional
buoyancy forces gives rise to a rich variety of flow patterns and instabilities, which are often
more complex than those observed in single-component convection. Understanding the
mathematical structure and behavior of the double-diffusive convection equation system
is therefore essential for both theoretical and applied sciences. Therefore a detailed linear
stability analysis of double-diffusive convection was performed, laying the groundwork
for understanding the onset of instabilities [21]. The low Prandtl number flow behavior
which is relevant to astrophysical and geophysical applications was exhaustively studied
as well [22]. The sub-microscale dynamics of double-diffusive convection was investigated
recently by Radko [23]. The presence of certain particles in the fluid system may influence
the heat diffusion [24]. Additional effects in homogeneous and heterogeneous porous
media are also the subject of the current study [25]. The nature of diffusion may also
depend on microscopic aspects of dynamics [26]. The double-diffusion phenomena is also
associated with an irreversible entropy production, which expresses the dissipative nature
of dynamics [27].

The literature of this field is remarkably extensive; without completeness, we only
mention some relevant studies and monographs [28-31]. The double-diffusion process is
an important process in oceanography in general [32], in geophysics, for understanding
the phenomena in magma chambers [33], in astrophysics [22,34,35], or double-diffusive
magnetic layering [36]. In hydrology it is meant to describe sediment laden rivers in
lakes and the ocean [37,38], in metallurgy [39], or finally even in various engineering
applications [40,41]. The formation of salt deposits, under salt density gradient and the
presence of solar radiation, have been studied in [42], becoming a double phase problem at
the point of crystallization [43]. The salinity gradient also typically implies a manifestation
of bacterial diversity in lakes. Different bacteria may be present in lakes, depending on
depth and salinity concentration [44]. The combined effects of salt diffusion, in the food
industry, have also been studied [45].

After the very first analysis of ‘an oceanographic curiosity: the perpetual salt foun-
tain” by Henry Stommel and co-workers in 1956 [46], Stern in 1960 first described the
double-diffusive convection and introduced the concept of salt fingers and their role in
oceanographic processes [47].

One can see that one of the most studied double-diffusion systems is salty fingers. The
question of the limits on growing finite-length salt fingers was analyzed and a Richard-
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son number constraint was found by [48]. Planform selection in salt fingers was also
studied [49].

Additionally—again without completeness—we mention some references for inter-
ested readers [50-52].

This publication aims to contribute to the ongoing exploration of the mathematics
of double-diffusive convection by presenting new analytical results that shed light on
the system’s behavior across different parameter regimes. By elucidating the underlying
mechanisms and mathematical structure of this complex phenomenon, we hope to advance
both the theoretical understanding and practical control of double-diffusive systems in
nature and industry.

2. Theory and Results
2.1. Double-Diffusion System Without Extra Source Terms

The conservation equations for mass, vertical momentum, heat and salinity equa-
tions (under Boussinesq’s approximation) which describes double-diffusive salt fingers
can be formulated in general vector form [50]. We want to perform direct calculations.
Correspondingly we start with the following system of differential equations:

Uy +v, =0, (1)

Vf + UVx + 00z — V(Vxx + Vzz) + G(BSzz — aTzz) =0, (2)
Ti +uTy +0T; — kp(Tex + T2z) =0, ®3)

St 4+ uSx + vSz — ks(Sxx + 52z) =0, 4)

applying the standard notation; therefore, u,v, T and S denote the dynamical variables
of the horizontal and vertical speed components, the temperature and the salinity. The
subscripts refer to the partial derivatives in respect to the temporal and spatial variables.
The physical parameters v, G, «, 8, kT and kg are the kinematic viscosity, the gravitational
acceleration, the coefficient of thermal expansion, the haline concentration coefficient at
constant pressure and temperature, the molecular diffusivity of heat and the molecular
diffusivity of salt [53]. We suppose that all the above mentioned coefficients are constant
for the system studied. There are also cases where the diffusion or heat diffusion coefficient
may depend on the parameters of the problem [54,55]. (The complete analysis or the
realistic equation-of-state for sea water is a relatively complicated problem, having a large
literature. Fortunately these aspects are irrelevant for our forthcoming analysis.) We
consider Figure 1 to fix our system’s geometrical relations.

A

Figure 1. Defining the directions and the velocity components of the investigated system.
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All five physical parameters should have positive real values. For better transparency
we use subscripts for the corresponding partial derivatives. The horizontal and the vertical
space variables are denoted with x and z, respectively.

In the next step, we apply the generalization of the self-similar Ansatz [56] for two
Cartesian space dimensional dependent dynamical variables in the form of the following:

u(x,z,t) =t"f(y), o(xzt) =t7g(), ®)
T(x,z,t) =t"°h(n), S(x,z,t) =t"%i(y), (6)
where 7 = ££Z is the reduced variable. In the next step, we demand the existence of the cor-
responding first and second derivatives of the shape functions with adequate smoothness.
For completeness, we mention that the very first use of § = x/+/(t) variable transformation
was applied by Ludwig Boltzmann more than a century ago [57]. (We usually use the first
two Greek letters & and §3 for the self-similar exponents as well but now these are fixed to
physical parameters). The exponent w is responsible for the spreading of the dynamical
variable in time, and all the other four exponents describe the decay or increment of the
variable in time. In most cases positive exponents mean spreading and decaying solutions
in time, which meets our physical intuitions. Existing self-similar symmetry also means
that the investigated system has no additional characteristic relaxation time or characteristic
length. It is also true that self-similar solutions are defined on an infinite horizon and there
is no need to introduce dimensionless variables like in the work of [50]. For an infinite
horizon it is not possible to define reasonable Reynolds or Rayleigh numbers. It is worth
mentioning that this self-similar Ansatz has a wide applicability in physics and it was
successfully applied to explain the quickly expanding Universe in a recent article which is
attracting remarkable interest [58].
After the usual steps of algebraic manipulations we arrive to the ordinary differential
equation (ODE) system of the following:

f+8 =0, (7)
_g_Lg/ r I Y /N
5~ +(f+9)¢ —2vg" + G(Bi" —ah') =0, 8)
/
—g—%+(f+g)h’—2kTh":0, ©9)
il ! 11
—§—7+(f+g)z —2ksi” =0, (10)

where prime means derivation with respect to . Additionally we get some constraints
among the self-similar exponents:

yzézezwzy:%. (11)
Note that now all exponents got the same fixed numerical value, which means that the
mathematics of the solution is quite restricted. If some exponents remain free then the
ODE system and the final solutions contain them as free parameters too. For the regular
diffusion equation, if both exponents are fixed to one half we automatically get fundamental
Gaussian and error function solutions. It is worth mentioning here that the Rayleigh-Benard
convection model [18] (which in a sense is a far analog) of this system has slightly different
self-similar exponents, resulting in a much richer mathematical structure. Now, the original
physical parameters of the starting dynamical system remain free. As usual the ordinary
differential equation of the shape function of the continuity equation Equation (7) can be
integrated, giving us the following: f 4+ ¢ = ¢ where c is our first free real integral constant
which is proportional to the velocity of the flow. These conditions help us to decouple the
heat and the salinity equations from the momentum and the continuity equation. We get
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even more; the heat conduction and the salinity equations become linear, not depending on
the products of dynamical variables. Both become independent in the form of

—4- th/ +ch' —2kth" =0, (12)
—i I el — 2k = 0. (13)

The solutions can be easily obtained by integrating the ODEs, giving us the following;:

h(n) = 30 (erf| 2 m 2 S| 4o (14)
)= 1 1 kTU ~oky 2],
. —o- (I —c) 1 2 c
— 2kg \ 4 . _ - N
i(n)=e s (ce,erfl“ / ksn + N + C4>, (15)

where erf refers to the Gaussian error function, now with an imaginary argument, and the
real integration constants are notated with c;, {i = 1...4} . For more information about
the properties of the error function, consult the handbook of [59]. Figure 2a presents the
shape functions of Equation (15) for some parameter sets. The numerical value of ¢, which
is basically the velocity, enhances the maximum of the peak and makes a shift to the right
of the peak. The kg molecular diffusivity of salt is responsible for the full-width at half
maximum (FWHM) of the peak. Figure 2b shows the projection of the S(x, z, t) salinity
distribution (z = 0). This is very similar to the usual Gaussian solution of diffusion.

i(m) ) 100

S(x,t)
50
- 0 10 20
29 | n

(a) (b)

Figure 2. (a) The shape functions of the salinity equation Equation (15). The black and blue curves

CDO

are for the real part of the solution ¢3 = 0 for the numerical parameters sets of (1,3,3) and of
(2.1, 0.5, 0.3) for the parameters of (cy4, ¢, ks). The third red curve shows the imaginary part ¢y = 0
for the parameters of (1, 3, 3). (b) This shows the projection of the real part of salinity distribution
S(x,z,t) for z = 0, with the parameters of (1,3, 3), respectively.

Now, if the second derivatives of Equations (14) and (15) are derived and replaced into
Equation (16) then the momentum equation of the double-diffusive convection problem can
be solved. Note that the possible integration of the continuity equation may lead to a linear
momentum equation, which will also mean that in the next step, the linear combination of
solutions (superposition) will also give us further solutions. Our experience shows that
fully analytic solutions can be evaluated only for ¢, ¢3 # 0 & c3, ¢4 = 0 in the reverse
condition ¢1, c3 = 0 & ¢, ¢4 # 0. The solution contains an additional integration which
should be evaluated numerically when all parameters have a given numerical value. No
fully analytic solutions exist for the most general case where all integral constants are not
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zero. We analyze the real solutions only. Therefore the ODE for the velocity shape function
contains just the second derivatives of the exponential function and reads as follows:

/ - —
—% - %%—cg’ —2vg" + G(Beye 2537 _ e oty (4 Ny =, (16)

The solution can be derived with quadrature and has the form of the following:

g(n) = et () <C5 erf [;\/—717 + %

Ghrkg
kskr[2ks —v][2kr — V]

+C6—

wca (2ks — vyel ol 7+ (=64} ’YD (17)

We analyze the real solutions only; therefore, we set c5s = 0. It is easy to see that for
c4 = cp, &« = B and kr = kg, the two exponential functions cancel each other because of
the two opposing competing diffusion effects. The k1, ks and v are still responsible for the
FWHM of the peaks. It is also clear from the formula that for v = 2ks = 2k the velocity
function becomes infinite. Large v viscosity causes a small velocity because it stands in
the denominator. Figure 3a shows us two different g(#) shape functions with different
parameter sets. We can see different kinds of linear combinations of exponential-type
functions (note that there is the product of a Gaussian and an exponential function in the
formula). The results are now so exciting. Either we have a peak with a global maximum
or minimum or two peaks with a minimum in between.

Figure 3b presents the velocity distribution v(x, z = 0, t) = 2 g(xt’%) for the
parameters of the black curve. Note that the v = 1/2 exponent is responsible for the quick
temporal decay.

To emphasize the linearity of the velocity distribution Equation (16), Figure 4 presents
a linear combination of three real solutions of Equation (17) for different c; integration
constants and when the spatial coordinates are shifted. In principle, an arbitrarily large
number of solutions could be summed up, resulting in very complex velocity distributions
in double-diffusive convection systems.

107

0.02
0.01

0.0 0.0
0.5

— 20 J
(a) (b)
Figure 3. (a) Two shape functions of the velocity equation Equation (17). The common parameters of
(G, cp,c4,¢6) are (10, 2, —6.2, 1). The black and the blue curves have different values of the parameters
(ks, kr,,B,v,c), namely (0.4, 1.3, 0.8, 38.18, 1) and (0.4, 1.6, 5.3, 2.8, 8.18, 0.5), respectively. (b) The
velocity distribution v(x, z = 0, t) with the parameters of the black curve, respectively.
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- 001

0.005
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Figure 4. A possible velocity distribution as a linear combination of three real solutions in the form of
o(x,y =01t =Y2, Gtz ~g([x — xi]t*% ), where x; are (0,0.3,0.5). The physical parameters are the
same as in Figure 3b). The linear combination parameters C;s are (1,1.8, —0.9), respectively.

In the following section we will study the irreversible nature of the double-diffusion
process. The general theory how entropy production can be evaluated can be found in [27],
based on the form of the temperature and density gradients. Entropy production is mostly
derived in classical systems; however, it can be evaluated on quantum scales as well [60].

(irr)

The entropy production due to the temperature inhomogeneities are as follows: o,

‘ 2
o) = /\(VTT> : (18)

where the A is the heat conductivity of material, which may be expressed as A = pcykr,
with p the density and ¢, the specific heat. Evaluating this form from Formula (14), one
arrives at the following;:

; 1(—x—y+2Vtc)?
a%l”) = Af( x —y+2Vic) . (19)
8 £2k%

Next we evaluate the entropy production due to the inhomogeneity in concentration. Based
on formula Equation (19) of chapter III of Ref. [27], the variation in chemical potential of

component / contributes to the entropy production by a term

oA = i(rv[4) a

In our case j; = js = —kgd,S is the current due to the salt concentration inhomogeneity.
The y; is the chemical potential of salt—for relatively small concentrations. It may be
considered y; = pugs ~ RTIn(S/Sp), where Sy is a reference concentration. Applying the
relation (20), for the entropy production related to the concentration inhomogeneity, we

have 2
(irr) —k R(axs) 21
Og S [ ( )
Similarly to Equation (19) the final formula reads as follows:
. v 2
ol _ gL EF Y+ 2VI)T (22)

2
8 £2k
Both formulas are quadratic in the spatial coordinate and therefore have inverse temporal depen-
dencies.

2.2. The Role of Possible Additional Source Terms

We can see that our obtained self-similar solutions are far from being complicated
and have no extra peculiarity. This is due to the fixed numerical values of all self-similar
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exponents. The Rayleigh-Bénard convection, which is also a fluid dynamical system
with coupled heat conduction, has a much broader self-similar symmetry because one
of the self-similar exponents remains free. Focusing in this direction to generalize the
double-diffusive convection system, we may consider addition terms like a source in the
temperature convection equation.

A straightforward way is taking a source term which is an arbitrary function of the
temperature 1n(T); in this sense, Equation (3) is changed to the following:

Ty + uTye + 0Ty — kp(Tax + Tez) = n(T). (23)

Keeping all exponents fixed to 1/2, it can be easily shown that the linear source terms should
have the form of n(T) = dTT Here d is the strength of the source (if positive) or sink (when
negative) and it fixes the proper physical dimension. The 1/t time-dependent factor is
needed to have the proper temporal asymptotic. We tried additional power-law dependent
source terms as well; only the square root n(T) = d'g# has a trivial analytic solution of
h(n) = 0. (We can easily imagine a periodic driving term as well, but that should assume
a traveling wave analysis which could be the topic of a possible forthcoming analysis.
Such systems usually have Mathieu functions in their solutions.) These show interesting
reconstructions of initial conditions with possible source in diffusion problems one may
find in Ref. [61].

Considering the f = t — t( transformation, the singularity can be shifted, having
smooth functions. The corresponding ODE for the temperature shape function is now
slightly changed to the following;:

h gl

—5 = ol = 2kgh" = dh, (24)

positive d values refer to the source. The solutions read as follows:

B 1 1 [2c—7]? 1 1 [2c—7)?
h(ﬂ)—C]M(2+d,2,—8kT +C2U i“‘d/E/_W ’ (25)

where M(,,) and U(, , ) are the Kummer’s M and Kummer’s U functions with the usual
integral constants of c; and ¢;. For more information about Kummer’s functions see [59].
As a definition, consider the series expansion of M(,, )

2 n

(a)yz

(@)t

with the (a), =a(a+1)(a+2)...(a+n—1),(a)o = 1 which is the so-called rising factorial
or Pochhammer’s Symbol [59]. In our present case b has a fixed non-negative integer value,

+ .+

M(a,b,z) =1+ 2 + (a)22 (26)

b (D)2

so none of the solutions have poles at b = —n. For the Kummer’s function M, when the
parameter a has negative integer numerical values (@ = —m), the solution is reduced to
a polynomial of degree m for the variable z. In other cases a # —m we get a convergent
infinite series for all values of 4,b and z. There is a connecting formula between the two
Kummer’s functions; U is defined from M via

U(a,b,z) =

Mla,b,z] 1_bM[1+a—b,2—b,z]> 27)

ﬂMﬂM(FH+a—HHH z T[a]T[2 — 0]

where I'(a) is the Gamma function [59]. It is clear that the structure of the irregular
Kummer’s U function is much more complicated.

These very nice mathematical formulas do not help us much to visualize and to
imagine how these functions look like for different parameters, especially for quadratic
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arguments. Therefore we present them for some parameter values. Figure 5a presents the
regular Kummer’s M function parts of the solution Equation (25) for different d source
values. The ¢ former integral constants are just shifted parallel to the x axis, and the kr
parameter defines the widths of the solutions. All these functions are real and regular in
the origin.

N /NS
. IR
/ | ) /|

(a) (b)
Figure 5. (a) The Kummer’s M part of the shape functions of the temperature Equation (25).
The common parameters are (c; = 1,c = 0,¢ = 0.1 and kr = 1). The black, blue, red, green,
pink, brown, cyan and gray lines are for numerical values of the source strength parameter d
of (2,1,1/2,0; —1/4, —1/2, —1, =3/2). (b) The real part of the Kummer’s U part with the
same parameters.

It is important to emphasize that there are four parameter ranges that exist where the
derived solutions behave qualitatively different:

* d < —1/2,where the derived solutions are divergent for large #s; these are the cyan
and the gray lines on Figure 3a. If the first parameter of the Kummer’s M function is a
negative integer then the function is a finite order polynomial in #. A nice example is
d= —% where

1 (2c—1)%\ _ 1 c 1 5
M(—l,z,—SkT =M _1/51_% _EW‘I'MW' (28)

Note that the first term on the right hand side is a constant (formally Kummer’s func-
tion of the first kind M(,, ) is equivalent to the generalized confluent hypergeometric
series with the notation of 1 Fy(,, )).

The smaller the first negative parameter of the Kummer’s function, the larger the
power of the polynomial. Thanks to the § = 1/2 exponent, the final T(x, z, t) tempera-
ture distribution will be decaying, but we will see that this parameter regime will not
attract the largest interest among the solutions.

e d = —1/2, the solution is constant on the whole # axis, this is presented by the brown line.

. —1/2 < d < 0, the solution is positive on the whole axis, and has a decay to zero
at large 77s. Such solutions are plotted with pink and green lines. These are well-
behaving solutions with a global maxima in the origin, and in this sense similar to
Gaussian solutions.

* 1/2 < d, the solutions has a maxima in the origin following quick oscillatory decay
to zero with growing number of zero transitions as d growing. Black, blue and red
curves present such solutions. Unfortunately, the defining series of the Kummer’s M
function Equation (26) converges very slowly for highly oscillatory functions.

In some sense these are the most interesting solutions.
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[ZC—#]Z 1 1 [ZC—L-;I/]2 1 1 [ZC—#]Z 2
UT :8/\

For completeness we show on Figure 5b how the irregular Kummer’s U solutions behave.
It can be shown that the Kummer’s U functions with quadratic arguments are finite
polynomials, and the first arguments are negative integer or half integer values. We
present only the real part of the solutions. Note that the general properties are very similar.
There are oscillatory and decaying solutions. There are divergent solutions and there is
a finite constant and a constantly zero solution as well. To have a complete overview,
Figure 6 shows three temperature distributions given with the Kummer’s M functions. We
considered physically relevant decaying solutions in three different parameter regimes.

T 4

=02

(@) (b) (©)
Figure 6. The Kummer’s M part of the temperature distribution. The left subfigure (a) is for
d = —1/3, the middle subfigure (b) is for D = 1/3 and the right subfigure (c) is for the parameter
d = 2, respectively. The additional common parameters are the same in all cases (kt = ¢ = 1),
respectively.

We gained considerable experience with the Kummer’s U and Kummer’s M
functions [17-20] in recent years. Usually, an additional Gaussian weight function was
involved in the solutions, but the general properties were very similar. The main difference
to our former solution is that a physical parameter (strength of the heat source) works as
an index of the solution and additionally we always have a t~1/2 prefactor in the final
dynamical variable which automatically gives us a temporal decay at infinite times.

According to Equation (18) the entropy production can be easily derived, giving us a
cumbersome but finite formula of

(29)

2 [ZC,XW]Z 2
+ 1 1 /
{<2c— ) ~t~M<2 +d,2,—8,g1T2ﬂ

Note the 1/t temporal decay.

To complete our investigations we have to analyze the behavior of the velocity field.
Considering only real solutions, we take the Gaussian solution for the salinity and the
Kummer’s M functions for the heat distribution; we can formulate the final ODE as follows:

17

! —
S % +cg —2vg”+G[,BC4(e 25 (4 )yr _

2
1 1 [2c—7]? " 1 1 [2c—7]? " B
1xc1M(2 +d, 5 Skr acoU > +d, 5 Skr =0, (30)

for better transparency, we marked and did not complete the second derivatives in the
equation. Unfortunately, we could not find the closed form for the solutions for the general
Kummer’s functions. However, if the power of the series of the Kummer’s function is not
larger than four, then the ODE has an exact solution:
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/

I oen
5 e g 4G [Me s (4

"
acy (ao +ayn + apn® + sy’ + ll4774> } =0, (31)

where the g; coefficients depend on the parameters of ¢, kr in a complicated way. The
solution is exhaustively long and contains numerous Gaussian and error function terms.
The direct form is given in the Appendix A at the end of the study.

3. Summary and Outlook

We investigated the double-diffusion convection flow system, which means that two
competing diffusion processes are coupled to the momentum equation. Examples of real
processes are heat and salt convection in water. Our self-similar Ansatz easily gave the
Gaussian and error functions for the salinity, temperature and flow velocity distributions,
which are less than our former expectations. The reason is that all self-similar exponents had
a given +3 numerical value. Additionally, the entropy production—which is a measure of
irreversibility—was derived as well. The derived function has a 1/t* asymptotic behavior
for large times and fixed positions. To deepen our analysis we considered an additional
cooler or heater source term in the temperature convection equation which drastically
opened the horizon of possible solutions. The heat distribution function becomes the
Kummer’s M or Kummer’s U function. The strength of the heat source becomes the
first parameter of the temperature distribution, which is a well-understood mathematical
feature. Unfortunately, the final velocity distribution cannot be evaluated analytically for all
temperature distribution parameters; however, it was possible up to a considerable order
of expansion of the function of the temperature. For future research, we may consider non-
linear heat conduction mechanisms and non-linear (beyond Boussinesq’s approximation)
salinity diffusivity.
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Appendix A

As a direct example, consider d = —5/2

(2 ) (-2 i) 213

2
2c2+3M(71 3 7#>kT
127 2k 2_ ¢ 3, 1 .4
6k e + el (AD)

After performing the double differentiation, we get the following:

24+3M(-1,3, L 2
_ ( 2 2"T>_i o (A2)

i(n)" :
3k2 K3 4k2.

We name the first constant term of the right hand side with ‘A’. After substituting this
formula to Equation (31) the solution can be derived with quadrature thanks to Maple 12.
Additional exhausting simplification by hand gives us the following:
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(1-2)2
e 4 erf 12
g(n) = 3k§\ﬁ(v2\m) . (—3C1\/—vk2Te% +2GaA\/TTk3 — 4Goc\/E) +
S G 2, 2 2
Coe™ % -ev — k) cypkge %s  —dva Akt + 8ksa Ak —
4van + 8va — 16ksa — 1/06172 + 2k51x172 +4dve — ksvzx). (A3)

Note that the solution contains Gaussian, exponential, 77 and 7% type dependencies only.
The complexity comes from the large number of parameters.
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